KMA315 Analysis 3A: Problems 3

Solutions to these problems should be submitted by 2:00pm on Tuesday the 12" of April 2016.

1. Let:

(i) f,9:R — R be continuous functions;
(ii)) S={r eR: f(z) > g(x)}; and

(ili) (xn)5°, be a sequence of points from S.

Show that if lim,,_, x, exists then lim,,_,., x, € S. (5 marks)

2. Let f:[0,1] — [0, 1] be the function defined by

x when z € QQ; and
1—2 when z € C(Q).

Prove that:

(i) f assumes every value between 0 and 1 (ie. that f is surjective); (1 mark)

(ii) f is continuous only at z = 3. (2 marks)

3. Let f : R — R be a continuous function such that f(z) = 0 for all € Q. Establish what
value f(z) takes for irrational values of x. (8 marks)
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4. Let (fn)5, be the sequence of real-valued functions on R where for each n € N,

1
fulx) =2+ = for all z € R.
n

Establish that:

(1) (fn)22, converges uniformly on R; (2 marks)

(i) (f2)52, does not converge uniformly on R. (& marks)
Note: for each n € N, f2(z) = [f,,(z)]? for all z € R.

5. Let ()2, be the sequence of real-valued functions on [0, 1] where for each n € N,

fn(x) = 2™ for all z € [0, 1].

(i) Establish whether (f,,)s, converges pointwise; (1 mark)

(ii) if it does, find the pointwise limit of (f,,)32,. (1 mark)
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