KMA315 Analysis 3A: Problems 3

Solutions to these problems should be submitted by 2:00pm on Tuesday the 12^{th} of April 2016.

- 1. Let:
 - (i) $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions;
 - (ii) $S = \{x \in \mathbb{R} : f(x) \ge g(x)\};$ and
- (iii) $(x_n)_{n=0}^{\infty}$ be a sequence of points from S.

Show that if $\lim_{n\to\infty} x_n$ exists then $\lim_{n\to\infty} x_n \in S$. (5 marks)

2. Let $f:[0,1] \to [0,1]$ be the function defined by

$$f(x) = \begin{cases} x & \text{when } x \in \mathbb{Q}; \text{ and} \\ 1 - x & \text{when } x \in \mathcal{C}(\mathbb{Q}). \end{cases}$$

Prove that:

- (i) f assumes every value between 0 and 1 (ie. that f is surjective); (1 mark)
- (ii) f is continuous only at $x = \frac{1}{2}$. (2 marks)
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) = 0 for all $x \in \mathbb{Q}$. Establish what value f(x) takes for irrational values of x. (3 marks)

There are more questions over the page...

4. Let $(f_n)_{n=0}^{\infty}$ be the sequence of real-valued functions on \mathbb{R} where for each $n \in \mathbb{N}$,

$$f_n(x) = x + \frac{1}{n}$$
 for all $x \in \mathbb{R}$.

Establish that:

- (i) $(f_n)_{n=0}^{\infty}$ converges uniformly on \mathbb{R} ; (2 marks)
- (ii) $(f_n^2)_{n=0}^{\infty}$ does not converge uniformly on \mathbb{R} . (3 marks) **Note:** for each $n \in \mathbb{N}$, $f_n^2(x) = [f_n(x)]^2$ for all $x \in \mathbb{R}$.
- 5. Let $(f_n)_{n=0}^{\infty}$ be the sequence of real-valued functions on [0, 1] where for each $n \in \mathbb{N}$,

$$f_n(x) = x^n$$
 for all $x \in [0, 1]$.

- (i) Establish whether $(f_n)_{n=0}^{\infty}$ converges pointwise; (1 mark)
- (ii) if it does, find the pointwise limit of $(f_n)_{n=0}^{\infty}$. (1 mark)